## **Towards Optimal Teams in Big Networks**

## Hanghang Tong

hanghang.tong@asu.edu

http://tonghanghang.org

@ the 2nd International Workshop on Machine Learning Methods for Recommender Systems (MLRec 2016)



## **Teams Are Everywhere**

### 1. Film Crew

### 2. Sports Team

3. Sales Team







4. Research Team

### 5. Military Team 6. Development Team



 Wuchty, Stefan, Ben Jones, and Brian Uzzi. "The Increasing Dominance of Teams in the Production of Knowledge," Science, May 2007, 316:1036-1039.

## **Networks Are Everywhere in Teams**



4. Research Team

**5. Military Team** 

### 6. Development Team



 Wuchty, Stefan, Ben Jones, and Brian Uzzi. "The Increasing Dominance of Teams in the Production of Knowledge," Science, May 2007, 316:1036-1039.

## **Network Science of Teams**

# People collaborate as a team to collectively perform some complex tasks



 Wuchty, Stefan, Ben Jones, and Brian Uzzi. "The Increasing Dominance of Teams in the Production of Knowledge," Science, May 2007, 316:1036-1039.

## **Research Questions**

- Q1: What do high-performing teams share in common? [Uzzi+Science13]
- Q2: How to foresee the success at an early stage? [Wang+Science13]
- Q3: What's the optimal design for a team in the context of networks? [Lappas+KDD09, Rangapuram+WWW13]
- S. Wuchty, B. Jones, and B. Uzzi. The Increasing Dominance of Teams in the Production of Knowledge, Science, 2007
- D. Wang, C. Song, and A.-L. Barabasi. Quantifying long-term scientific impact. Science, 342(6154): 127-132, 2013.
- T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in social networks. In KDD, pages 467–476, 2009.
- S. S. Rangapuram, T. Buhler, and M. Hein. Towards realistic team formation in social networks based on densest subgraphs. WWW 2013.



Motivations



- Q1: Team Performance Characterization
- Q2: Team Performance Prediction
- Q3: Team Performance Optimization
- Open Challenges



### **Degrees, Forwarding, Tie Skewness and Sociability**



### A focused team with larger reachability performs better

## **The Effect of Team Leaders**

Result initially found with sales teams and replicated in 2 independent studies with software teams showing measurable effects on productivity and quality even after taking into account team-level communication structure. Accounts for > 55% variance



Teams perform better when (formal) leader is central in communication out-flow but not in-flow [Ehrlich & Tong WIDS12]

### **The Effect of Team Network Connectivity**



**Pair-wised team similarity** 

"Happy families are all alike; every unhappy family is unhappy in its own way." - Leo Tolstoy

## **Performance Dynamics** (metric: long-term citation counts)

pick up fast in early years Scaled Citation **Delayed pattern** Age

Impact of scientific work from different domains behaves differently

• L. Li, and H. Tong: The Child is Father of the Man: Foresee the Success at the Early Stage. KDD 2015: 655-664

## **Performance/Impact Coupling**



- Analysis conducted on stack overflow,
- independently verified on another CQA: math overflow
- Y. Yao, H. Tong, F. Xu, J. Lu: Predicting long-term impact of CQA posts: a comprehensive viewpoint. KDD 2014 "Data Mining Reveals the Secret to Getting Good Answers", MIT Technology Review, 2013

Roadmap

Motivations



- Q1: Team Performance Characterization
  - Q2: Team Performance Prediction
- Q3: Team Performance Optimization
- Open Challenges



## **Performance Prediction: Setup**

- Given: Initial Performance of a team
- Predict:
  - (1) Long-Term Performance [KDD15]
  - (2) Performance Trajectory [SDM16]



- L. Li, and H. Tong: The Child is Father of the Man: Foresee the Success at the Early Stage. KDD 2015: 655-664
- L. Li, *H. Tong*, J. Tang and W. Fan: "iPath: Forecasting the Pathway to Impact". SDM 2016

## **Performance Prediction: Challenges**

- C1: Scholarly feature design
- C2: Non-linearity
- C3: Domain heterogeneity
- C4: Dynamics

L. Li, and H. Tong: The Child is Father of the Man: Foresee the Success at the Early Stage. KDD 2015: 655-664

## **C1: Scholarly Feature Design**



**Obs.:** Adding content features brings little improvement



Arizona State University

## **C2: Non-linearity**





Arizona State University



Obs.: Impact of scientific work from different domains behaves differently



# C4: Dynamics

### arXiv monthly submission rates



## Q: How to quickly update the predictive model?



Arizona State University

# **iBall** — Formulations



## Optimization Formulation



- Within-Domain Model: regression/classification, linear/non-linear
- Cross-Domain Consistency: similar domains have similar models
   Question: how to instantiate such consistency?
- L. Li, and H. Tong: The Child is Father of the Man: Foresee the Success at the Early Stage. KDD 2015: 655-664





Paper 3



**Intuitions:** similar domains (large  $A_{ij}$ )

 $\rightarrow$  similar predicted outputs (small $\|\mathbf{K}^{(i)}\mathbf{w}^{(i)} - \mathbf{K}^{(ij)}\mathbf{w}^{(j)}\|_2^2$ )



## iBall — Closed-form Solutions

• Closed-form Solution  $\mathbf{w} = \mathbf{S}^{-1}\mathbf{Y}$ 

• iBall — linear:  

$$\mathbf{w} = [\mathbf{w}^{(1)}; \dots; \mathbf{w}^{(k)}] \quad \mathbf{Y} = [\mathbf{X}^{(1)'}\mathbf{Y}^{(1)}; \dots; \mathbf{X}^{(k)'}\mathbf{Y}^{(k)}]$$



Time Complexity:  $O(dk)^3$ 

*d*: # of features; k: # of domains (*dk:* in the order of 10 or 100)





Arizona State University

## iBall — Closed-form Solutions





## iBall — Scale-up with Dynamic Update

- Key idea #1: Approx S by low-rank approx
  Details:
- $$\begin{split} \mathbf{S}_{t+1} &\approx \mathbf{U}_{t+1} \mathbf{\Lambda}_{t+1} \mathbf{U}_{t+1}' \longrightarrow \mathbf{W}_{t+1} &= \mathbf{S}_{t+1}^{-1} \mathbf{Y}_{t+1} \\ &= \mathbf{U}_{t+1} \mathbf{\Lambda}_{t+1}^{-1} \mathbf{U}_{t+1}' \mathbf{Y}_{t+1} \\ &= \mathbf{U}_{t+1} \mathbf{\Lambda}_{t+1}^{-1} \mathbf{U}_{t+1}' \mathbf{Y}_{t+1} \\ & \text{(Overall: } O(nr) \text{)} \end{split}$$
  - Complexity:  $O(n^3) \rightarrow O(n^2r + nr)$
  - Benefit: avoid matrix inverse

Question: how to avoid re-computing low-rank approx at each time step?



## iBall — Scale-up with Dynamic Update

## Key idea #2: Incrementally update the low

rank structure of S



(low rank, sparse)

• Complexity:  $O(n^2r) \rightarrow O((n+m)(r^2+r'^2)), r \ll n$ 

Benefit: avoid re-computing low-rank approx

## **Paper Citation Prediction Performance**



Datasets: AMiner (2,243,976 papers, 1,274,360 authors, 8,882 venues)





• L. Li, and H. Tong: The Child is Father of the Man: Foresee the Success at the Early Stage. KDD 2015

# **Running Time Comparison**



### **Obs.**: iBall-fast outperforms other non-linear methods



Arizona State University

## **Quality vs. Speed**



### **Obs.**: iBall-fast: good trade-off between quality and speed



## **iBall: Summary**



- Goal: predict long-term impact of scholarly entities
- Solutions: joint predictive model (iBall)

| Challenges | ©1feature      | ©non-     | ©3 domain-    | C4            |
|------------|----------------|-----------|---------------|---------------|
|            | design         | linearity | heterogeneity | dynamics      |
| Tactics    | first 3 years' | kernel    | domain        | low-rank      |
|            | citation       | trick     | consistency   | approximation |

### Results:

- iBall joint models better than separate versions
- iBall-fast updates efficiently and accurately

L. Li, and H. Tong: The Child is Father of the Man: Foresee the Success at the Early Stage. KDD 2015: 655-664



## Roadmap

- Motivations
- Q1: Team Performance Characterization
- Q2: Team Performance Prediction
  - Q3: Team Performance Optimization
    - Team Replacement
    - Team Enhancement
- Open Challenges



## **Churn of A Team Member**

- Case 1: Employee resigns in a sales team
- Case 2: Task force down in a SWAT team
- Case 3: Rotation tactic between benches in NBA team

# **Q:** How to find the best alternative when a team member leaves?

- L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin and N. Buchler: Replacing the Irreplaceable: Fast Algorithms for Team Member Recommendation, WWW 2015
- N. Cao, Y.-R. Lin, L. Li, H. Tong: g-Miner: Interactive Visual Group Mining on Multivariate Graphs, ACM CHI 2015
- System prototype & video demo: <u>http://team-net-work.org</u>

## **Team Member Replacement**

Problem Definition: Given: (1) A labelled social network  $G := \{A, L\}$ (2) A team  $G(\mathcal{T})$ (3) A team member  $p \in \mathcal{T}$ Skill Indicator

**Recommend:** A "best" alternative  $q \notin T$  to replace the person *p*'s role in the team G(T)



**Q:** who is a good candidate to replace the person to leave

Arizona State University

# **Social Science Literature**



- Team members prefer to work with people they have worked before [Hinds+OBHDP00]
- Distributed teams perform better when members know each other [Cummings+CSCW08]
- Specific communication patterns amongst team members are critical for performance [Cataldo+CHI12]

**Conjecture:** The similarity should be measured in the **context of the team itself** 



# **Design Objectives**

**Objective 1:** A good candidate should have a similar skill set



New team would have a similar skill set as the old team to continue to complete the task



Arizona State University

# **Design Objectives**

**Objective 2**: A good candidate should have a similar network structure



New team would have a similar network structure as the old team to collaborate effectively



Arizona State University

## **Design Objectives**

# The skill and structure match should be fulfilled simultaneously!



# New team would have similar skill and communication configuration for each sub-task

• L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin and N. Buchler: Replacing the Irreplaceable: Fast Algorithms for Team Member Recommendation, WWW 2015

## **Random Walk based Graph Kernel**





### **Details:**

- 1. Compare similarity of every pair of nodes from each graph
- Eg: (1,2) vs (a, j)  $\rightarrow$  less similar

(1,5) vs  $(a,e) \rightarrow$  more similar

- 2. Node pair similarity is measured by random walks
- 3. Two graphs are similar if they share many similar node pairs



## Random Walk based Graph Kernel



### **Remarks:**

- Incorporates both attributes and structures similarity
- Ideal fit for our two design objectives simultaneously



## Kronecker Product Graph w/o Attribute



• S. V. N. Vishwanathan, Nicol N. Schraudolph, Imre Risi Kondor, and Karsten M. Borgwardt. Graph Kernels. Journal of Machine Learning Research, 11:1201–1242, April 2010.

## **RW Graph Kernel — Formulation**

**Taking expectations instead of summing** 

$$\operatorname{Ker}(G_1, G_2) = \sum_k c^k q'_{\times} (L_{\times} A_{\times})^k L_{\times} p_{\times}$$
$$= q'_{\times} (I - cL_{\times} A_{\times})^{-1} L_{\times} p_{\times}$$

- Computational cost (A<sub>x</sub>: t<sup>2</sup> x t<sup>2</sup>)
  - Exact methods: [Vishwanathan+JMLR2010]
    - $O(t^6)$  Direct computation
    - O(t<sup>3</sup>) Sylvester equation
  - Approx methods: O(t<sup>2</sup>r<sup>4</sup>+mr+r<sup>6</sup>) [Kang+SDM12]

- U. Kang, Hanghang Tong, Jimeng Sun. Fast Random Walk Graph Kernel. SDM 2012
- S. V. N. Vishwanathan, N. N. Schraudolph, I. Kondor, and K. M. Borgwardt. Graph Kernels. JMLR 2010.

## **TEAMREP-BASIC**

## Find a new member q not in the current team that satisfies: $q = \arg \max_{j,j \notin \mathcal{T}} \operatorname{Ker}(G(\mathcal{T}), G(\mathcal{T}_{p \to j}))$



One graph kernel computation for every possible candidate

- Challenge: need to compute many graph kernel overall complexity: O(nt<sup>3</sup>)
- Questions:
  - Q1: how to reduce the number of graph kernels
  - Q2: how to speed up the computation for each graph kernel

L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin and N. Buchler: Replacing the Irreplaceable: Fast Algorithms for Team Member Recommendation, WWW 2015

# **Scale-up: Candidate Filtering**

**Pruning Strategy:** Filter out all the candidates w/o any connections to any of the rest team members.



- **Theorem:** The pruning is safe: wont' miss any potentially good replacement
- Benefit: The number of graph kernel computations is reduced to O(size of the neighborhood of T)  $O(\sum_{i=1}^{n} d_i)$



Arizona State University

## **Speedup** — **Observation**



### **Observation:**

Many redundancies — the nodes and edges within the rest team members remain the same



## Speedup — Approx Approach



The common part is the adjacency matrix of the rest team members



## Speedup — Approx Approach



 $\approx y'(1 - cL_{\times}(X_{1}Y_{1}) \otimes (X_{2}Y_{2}))^{-1}L_{\times}x$   $= y'L_{\times}x + cy'L_{\times}(X_{1} \otimes X_{2})M(Y_{1} \otimes Y_{2})L_{\times}x$   $M = (I - c(\sum_{j=1}^{l}Y_{1}L_{1}^{(j)}X_{1} \otimes Y_{2}L_{2}^{(j)}X_{2}))^{-1}$   $M \text{ is of size } (r+2)^{2} \times (r+2)^{2}$ 

**Time Complexity:**  $O((\sum_{i \in \mathcal{T}/p} d_i)(lt^2r + r^6))$ 

**Original Complexity:**  $O(nt^3)$ 



Arizona State University

Details



## **Prototype Systems**

#### Questions

- Q1: How effective is skill + structure?
- Q2: How fast is pruning?
- Q3: How fast is proposed solution?
- Q4: How is the scalability?



 Nan Cao, Yu-Ru Lin, Liangyue Li, Hanghang Tong."g-Miner: Interactive Visual Group Mining on Multivariate Graphs", ACM CHI 2015.

## **User Studies**



# Our method achieves the best average recall, precision and R@1

 L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin and N. Buchler: Replacing the Irreplaceable: Fast Algorithms for Team Member Recommendation, WWW 2015

## **Application in Author Alias Prediction**

proposed



**Our method achieves the highest accuracy** 

Author Alias: Alexander J. Smola vs. Alex J. Smola



Arizona State University

# **Speed-up by Pruning**

#### Questions

- Q1: How effective is skill + structure?
- Q2: How fast is pruning?
- Q3: How fast is proposed solution?
- Q4: How is the scalability?



### **Pruning has dramatic speed improvement**



## **Further Speed-up**

#### Questions

- Q1: How effective is skill + structure?
- Q2: How fast is pruning?

Q3: How fast is proposed solution?

• Q4: How is the scalability?



## **Exploiting redundancy leads to additional speed-up!**



## **Scalability**

### Questions

- Q1: How effective is skill + structure?
- Q2: How fast is pruning?
- Q3: How fast is proposed solution?
- Q4: How is the scalability?



### **TEAMREP-FAST-EXACT**

### **TEAMREP-FAST-APPROX**

### **Our fast solutions scale sub-linearly**



## **Team Member Replacement - Summary**

- Problem Def: Team Member Replacement
- Design Objectives: skill + structural matching
- Solutions: graph kernel and fast algorithms
- Prototype Systems: <u>http://team-net-work.org/</u>



- L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin and N. Buchler: Replacing the Irreplaceable: Fast Algorithms for Team Member Recommendation, WWW 2015
- N. Cao, Y.-R. Lin, L. Li, H. Tong: g-Miner: Interactive Visual Group Mining on Multivariate Graphs, ACM CHI 2015

## **Beyond Team Member Replacement**

### Team Shrinkage

 If we need to reduce the size of an existing team (e.g., for the purpose of cost reduction), who shall leave the team?

### Team Expansion

 If the team leader perceives the need to enhance certain expertise of the entire team, who shall we bring into the team?

### Team Conflict Resolution

 If the team leader sees a conflict between certain team members, how shall we resolve it?

# Key Idea: Solve all these team enhancement scenarios by team member replacement !

L. Li, H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin and N. Buchler: Enhancing Team Composition in Professional Networks: Problem Definitions and Fast Solutions, 2016

# **Open Challenges**

- Team Performance Characterization
  - Correlation  $\rightarrow$  Causality
  - When does "1+1 < 2" ?</p>
- Team Performance Prediction
  - Joint Content-Individual-Team Prediction
  - Prediction → Attribution
- Team Performance Optimization
  - Predictive Optimization
  - Team Optimization → Network Optimization



## Acknowledgement



Norbou Buchler, Tina Eliassi-Rad, Nan Cao, Kate Erhlich, Wei Fan, Liangyue Li, Yuru Lin, Jie Tang, Brian Uzzi, Dashun Wang

Project website: http://team-net-work.org (for data, paper, slides and systems, etc)